Sexual Conflict
SexualSelection.Rd
Number of species in each of two taxa in closely related taxon pairings and
the difference between the two groups. One taxon has multiple matings
(polyandrous.species
) and one has only single matings
(monandrous.species
).
Format
A data frame with 25 observations on the following 4 variables.
- polyandrous.species
a numeric vector
- monandrous.species
a numeric vector
- difference
a numeric vector
- taxon.pair
identifier
Source
Arnqvist, G., M. Edvardsson, U. Friberg, and T. Nilsson. 2000. Sexual conflict promotes speciation in insects. Proceedings of the National Academy of Sciences (USA) 97: 10460-10464.
Examples
SexualSelection
#> polyandrous.species monandrous.species difference taxon.pair
#> 1 53 10 43 A
#> 2 73 120 -47 B
#> 3 228 74 154 C
#> 4 353 289 64 D
#> 5 157 30 127 E
#> 6 300 4 296 F
#> 7 34 18 16 G
#> 8 3400 3500 -100 H
#> 9 20 1000 -980 I
#> 10 196 486 -290 J
#> 11 1750 660 1090 K
#> 12 55 63 -8 L
#> 13 37 115 -78 M
#> 14 100 30 70 N
#> 15 21000 60 20940 O
#> 16 37 40 -3 P
#> 17 7 5 2 Q
#> 18 15 7 8 R
#> 19 18 6 12 S
#> 20 240 13 227 T
#> 21 15 14 1 U
#> 22 77 16 61 V
#> 23 15 14 1 W
#> 24 85 6 79 X
#> 25 86 8 78 Y
histogram(~ difference, SexualSelection, n = 20)
hist(SexualSelection$difference, breaks = 20)
# Calculate the number of tests and the number of negative tests
(n <- length(SexualSelection$difference))
#> [1] 25
(n.neg <- sum(SexualSelection$difference < 0))
#> [1] 7
2 * pbinom(q = n.neg, size = n, prob = 0.5)
#> [1] 0.04328525
# With a binomial test
binom.test(n.neg, n, p = 0.5)
#>
#>
#>
#> data: n.neg out of 25L
#> number of successes = 7, number of trials = 25, p-value = 0.04329
#> alternative hypothesis: true probability of success is not equal to 0.5
#> 95 percent confidence interval:
#> 0.1207167 0.4938768
#> sample estimates:
#> probability of success
#> 0.28
#>