Skip to contents

Number of species in each of two taxa in closely related taxon pairings and the difference between the two groups. One taxon has multiple matings (polyandrous.species) and one has only single matings (monandrous.species).

Usage

SexualSelection

Format

A data frame with 25 observations on the following 4 variables.

polyandrous.species

a numeric vector

monandrous.species

a numeric vector

difference

a numeric vector

taxon.pair

identifier

Source

Arnqvist, G., M. Edvardsson, U. Friberg, and T. Nilsson. 2000. Sexual conflict promotes speciation in insects. Proceedings of the National Academy of Sciences (USA) 97: 10460-10464.

Examples


SexualSelection
#>    polyandrous.species monandrous.species difference taxon.pair
#> 1                   53                 10         43          A
#> 2                   73                120        -47          B
#> 3                  228                 74        154          C
#> 4                  353                289         64          D
#> 5                  157                 30        127          E
#> 6                  300                  4        296          F
#> 7                   34                 18         16          G
#> 8                 3400               3500       -100          H
#> 9                   20               1000       -980          I
#> 10                 196                486       -290          J
#> 11                1750                660       1090          K
#> 12                  55                 63         -8          L
#> 13                  37                115        -78          M
#> 14                 100                 30         70          N
#> 15               21000                 60      20940          O
#> 16                  37                 40         -3          P
#> 17                   7                  5          2          Q
#> 18                  15                  7          8          R
#> 19                  18                  6         12          S
#> 20                 240                 13        227          T
#> 21                  15                 14          1          U
#> 22                  77                 16         61          V
#> 23                  15                 14          1          W
#> 24                  85                  6         79          X
#> 25                  86                  8         78          Y

histogram(~ difference, SexualSelection, n = 20)


hist(SexualSelection$difference, breaks = 20)


# Calculate the number of tests and the number of negative tests
(n <- length(SexualSelection$difference))
#> [1] 25
(n.neg <- sum(SexualSelection$difference < 0))
#> [1] 7

2 * pbinom(q = n.neg, size = n, prob = 0.5)
#> [1] 0.04328525

# With a binomial test
binom.test(n.neg, n, p = 0.5)
#> 
#> 
#> 
#> data:  n.neg out of 25L
#> number of successes = 7, number of trials = 25, p-value = 0.04329
#> alternative hypothesis: true probability of success is not equal to 0.5
#> 95 percent confidence interval:
#>  0.1207167 0.4938768
#> sample estimates:
#> probability of success 
#>                   0.28 
#>