Vampire Bat Bites
VampireBites.Rd
Numbers of cattle bitten by the cow's estrous cycle.
Format
A data frame with 4 observations on the following 3 variables.
- estrous
a factor with levels:
no
andyes
- bitten
a factor with levels:
no
andyes
- count
a numeric vector
Source
Turner, D.C. 1975. The Vampire Bat: a Field Study in Behavior and Ecology. Johns Hopkins Press: Baltimore, MD.
Examples
demo(sec9.4)
#>
#>
#> demo(sec9.4)
#> ---- ~~~~~~
#>
#> > ## VampireBites
#> >
#> > ## Table 9.4-1
#> > xtabs(count ~ estrous + bitten, data = VampireBites)
#> bitten
#> estrous no yes
#> no 322 6
#> yes 7 15
#>
#> > ## Fisher's Exact Test
#> > fisher.test(xtabs(count ~ estrous + bitten, data = VampireBites))
#>
#> Fisher's Exact Test for Count Data
#>
#> data: xtabs(count ~ estrous + bitten, data = VampireBites)
#> p-value < 2.2e-16
#> alternative hypothesis: true odds ratio is not equal to 1
#> 95 percent confidence interval:
#> 29.94742 457.26860
#> sample estimates:
#> odds ratio
#> 108.3894
#>
#>
#> > ## Section 9.5
#> > ## Using G-test
#> > try({
#> + # See http://www.psych.ualberta.ca/~phurd/cruft/g.test.r
#> +
#> + # Log-likelihood tests of independence & goodness of fit
#> + # Does Williams' and Yates' correction
#> + # does Monte Carlo simulation of p-values, via gtestsim.c
#> + #
#> + # G & q calculation from Sokal & Rohlf (1995) Biometry 3rd ed.
#> + # TOI Yates' correction taken from Mike Camann's 2x2 G-test fn.
#> + # GOF Yates' correction as described in Zar (2000)
#> + # more stuff taken from ctest's chisq.test()
#> + #
#> + # ToDo:
#> + # 1) Beautify
#> + # 2) Add warnings for violations
#> + # 3) Make appropriate corrections happen by default
#> + #
#> + # V3.3 Pete Hurd Sept 29 2001. phurd@ualberta.ca
#> +
#> + g.test <- function(x, y = NULL, correct="none",
#> + p = rep(1/length(x), length(x)), simulate.p.value = FALSE, B = 2000)
#> + {
#> + DNAME <- deparse(substitute(x))
#> + if (is.data.frame(x)) x <- as.matrix(x)
#> + if (is.matrix(x)) {
#> + if (min(dim(x)) == 1)
#> + x <- as.vector(x)
#> + }
#> + if (!is.matrix(x) && !is.null(y)) {
#> + if (length(x) != length(y))
#> + stop("x and y must have the same length")
#> + DNAME <- paste(DNAME, "and", deparse(substitute(y)))
#> + OK <- complete.cases(x, y)
#> + x <- as.factor(x[OK])
#> + y <- as.factor(y[OK])
#> + if ((nlevels(x) < 2) || (nlevels(y) < 2))
#> + stop("x and y must have at least 2 levels")
#> + x <- table(x, y)
#> + }
#> + if (any(x < 0) || any(is.na(x)))
#> + stop("all entries of x must be nonnegative and finite")
#> + if ((n <- sum(x)) == 0)
#> + stop("at least one entry of x must be positive")
#> + #If x is matrix, do test of independence
#> + if (is.matrix(x)) {
#> + #Test of Independence
#> + nrows<-nrow(x)
#> + ncols<-ncol(x)
#> + if (correct=="yates"){ # Do Yates' correction?
#> + if(dim(x)[1]!=2 || dim(x)[2]!=2) # check for 2x2 matrix
#> + stop("Yates' correction requires a 2 x 2 matrix")
#> + if((x[1,1]*x[2,2])-(x[1,2]*x[2,1]) > 0)
#> + {
#> + x[1,1] <- x[1,1] - 0.5
#> + x[2,2] <- x[2,2] - 0.5
#> + x[1,2] <- x[1,2] + 0.5
#> + x[2,1] <- x[2,1] + 0.5
#> + }
#> + else
#> + {
#> + x[1,1] <- x[1,1] + 0.5
#> + x[2,2] <- x[2,2] + 0.5
#> + x[1,2] <- x[1,2] - 0.5
#> + x[2,1] <- x[2,1] - 0.5
#> + }
#> + }
#> +
#> + sr <- apply(x,1,sum)
#> + sc <- apply(x,2,sum)
#> + E <- outer(sr,sc, "*")/n
#> + # are we doing a monte-carlo?
#> + # no monte carlo GOF?
#> + if (simulate.p.value){
#> + METHOD <- paste("Log likelihood ratio (G-test) test of independence\n\t with simulated p-value based on", B, "replicates")
#> + tmp <- .C("gtestsim", as.integer(nrows), as.integer(ncols),
#> + as.integer(sr), as.integer(sc), as.integer(n), as.integer(B),
#> + as.double(E), integer(nrows * ncols), double(n+1),
#> + integer(ncols), results=double(B), PACKAGE= "ctest")
#> + g <- 0
#> + for (i in 1:nrows){
#> + for (j in 1:ncols){
#> + if (x[i,j] != 0) g <- g + x[i,j] * log(x[i,j]/E[i,j])
#> + }
#> + }
#> + STATISTIC <- G <- 2 * g
#> + PARAMETER <- NA
#> + PVAL <- sum(tmp$results >= STATISTIC)/B
#> + }
#> + else {
#> + # no monte-carlo
#> + # calculate G
#> + g <- 0
#> + for (i in 1:nrows){
#> + for (j in 1:ncols){
#> + if (x[i,j] != 0) g <- g + x[i,j] * log(x[i,j]/E[i,j])
#> + }
#> + }
#> + q <- 1
#> + if (correct=="williams"){ # Do Williams' correction
#> + row.tot <- col.tot <- 0
#> + for (i in 1:nrows){ row.tot <- row.tot + 1/(sum(x[i,])) }
#> + for (j in 1:ncols){ col.tot <- col.tot + 1/(sum(x[,j])) }
#> + q <- 1+ ((n*row.tot-1)*(n*col.tot-1))/(6*n*(ncols-1)*(nrows-1))
#> + }
#> + STATISTIC <- G <- 2 * g / q
#> + PARAMETER <- (nrow(x)-1)*(ncol(x)-1)
#> + PVAL <- 1-pchisq(STATISTIC,df=PARAMETER)
#> + if(correct=="none")
#> + METHOD <- "Log likelihood ratio (G-test) test of independence without correction"
#> + if(correct=="williams")
#> + METHOD <- "Log likelihood ratio (G-test) test of independence with Williams' correction"
#> + if(correct=="yates")
#> + METHOD <- "Log likelihood ratio (G-test) test of independence with Yates' correction"
#> + }
#> + }
#> + else {
#> + # x is not a matrix, so we do Goodness of Fit
#> + METHOD <- "Log likelihood ratio (G-test) goodness of fit test"
#> + if (length(x) == 1)
#> + stop("x must at least have 2 elements")
#> + if (length(x) != length(p))
#> + stop("x and p must have the same number of elements")
#> + E <- n * p
#> +
#> + if (correct=="yates"){ # Do Yates' correction
#> + if(length(x)!=2)
#> + stop("Yates' correction requires 2 data values")
#> + if ( (x[1]-E[1]) > 0.25) {
#> + x[1] <- x[1]-0.5
#> + x[2] <- x[2]+0.5
#> + }
#> + else if ( (E[1]-x[1]) > 0.25){
#> + x[1] <- x[1]+0.5
#> + x[2] <- x[2]-0.5
#> + }
#> + }
#> + names(E) <- names(x)
#> + g <- 0
#> + for (i in 1:length(x)){
#> + if (x[i] != 0) g <- g + x[i] * log(x[i]/E[i])
#> + }
#> + q <- 1
#> + if (correct=="williams"){ # Do Williams' correction
#> + q <- 1+(length(x)+1)/(6*n)
#> + }
#> + STATISTIC <- G <- 2*g/q
#> + PARAMETER <- length(x) - 1
#> + PVAL <- pchisq(STATISTIC, PARAMETER, lower = FALSE)
#> + }
#> + names(STATISTIC) <- "Log likelihood ratio statistic (G)"
#> + names(PARAMETER) <- "X-squared df"
#> + names(PVAL) <- "p.value"
#> + structure(list(statistic=STATISTIC,parameter=PARAMETER,p.value=PVAL,
#> + method=METHOD,data.name=DNAME, observed=x, expected=E),
#> + class="htest")
#> + }
#> +
#> + print( g.test(xtabs(count ~ estrous + bitten, data = VampireBites)) )
#> + cat("\nObserved Values:\n")
#> + print(xtabs(count ~ estrous + bitten, data = VampireBites))
#> + cat("\nExpected Values:\n")
#> + g.test(xtabs(count ~ estrous + bitten, data = VampireBites))$expected
#> + }
#> + )
#>
#> Log likelihood ratio (G-test) test of independence without correction
#>
#> data: xtabs(count ~ estrous + bitten, data = VampireBites)
#> Log likelihood ratio statistic (G) = 71.451, X-squared df = 1, p-value
#> < 2.2e-16
#>
#>
#> Observed Values:
#> bitten
#> estrous no yes
#> no 322 6
#> yes 7 15
#>
#> Expected Values:
#> no yes
#> no 308.32 19.68
#> yes 20.68 1.32