Carry out the Johnson-Neyman Technique

Details

Package:jnt
Type:Package
Version:0.4
Date:2016-09-14
License:GPL-2
LazyLoad:yes
LazyData:yes

References

Johnson PO, Neyman J (1936) Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs 1:57-93.

Hunka S, Leighton J (1997) Defining Johnson-Neyman regions of significance in three-covariate ANCOVA using Mathematica. Journal of Educational and Behavioral Statistics 22: 361-387.

White CR (2003) Allometric analysis beyond heterogenous regression slopes: Use of the Johnson-Neyman Technique in comparative biology. Physiol Biochem Zool 76: 135-140.

Examples:

White CR (2003) The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals. Physiol Biochem Zool 76: 122-134.

Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland T, Jr (2008) Morphometrics of the avian small intestine compared with that of nonflying mammals: A phylogenetic approach. Physiol Biochem Zool 81: 526-550.

Author

Kevin Middleton (middletonk@missouri.edu)

Maintainer: Kevin Middleton (middletonk@missouri.edu)

Examples


example(jnt)
#> 
#> jnt> # Simulate data
#> jnt> set.seed(1234)
#> 
#> jnt> n <- 50
#> 
#> jnt> x1 <- rnorm(n)
#> 
#> jnt> y1 <- x1 + rnorm(n, sd = 0.2)
#> 
#> jnt> x2 <- rnorm(n)
#> 
#> jnt> y2 <- 1.25 * x2 + rnorm(n, sd = 0.2)
#> 
#> jnt> df1 <- data.frame(x = x1, y = y1)
#> 
#> jnt> df2 <- data.frame(x = x2, y = y2)
#> 
#> jnt> (jnt.out <- jnt(df1, df2))
#> Fitting with OLS
#> Assuming x variable is column 1, and y is column 2.
#> 
#> Johnson-Neyman Technique
#> 
#> Alpha =  0.05 
#> 
#> Data 1:
#> 	Slope		 0.9853 
#> 	Intercept	 0.02126 
#> 
#> Data 2:
#> 	Slope		 1.182 
#> 	Intercept	 0.01386 
#> 
#> Region of non-significant slope difference
#> 	Lower: -0.5258 
#> 	Upper: 0.8701 
#> 
#> 
#> jnt> plot(jnt.out)
#> `geom_smooth()` using formula 'y ~ x'